22.6.17

WannaCryptor attack ‘may have come from Lazarus group’


Experts in the UK and the US have reportedly claimed that the recent global WannaCryptor ransomware attack was initiated by the North Korean Lazarus Group.
The National Cyber Security Centre in the UK has declined to comment on the reports, but a separate source has reportedly confirmed to the the Guardian that the organization had completed an assessment on the group within the last few weeks.
Another security source has also told the BBC that the NCSC believes that the Lazarus Group was indeed behind the latest attack, which affected organizations the world over.
The BBC has also claimed that WannaCryptor has already been linked with a cyberattack on Sony Pictures in 2014.
That incident came as the company prepared to release the movie The Interview, a satire about the North Korean regime.
WannaCryptor swept across the world in May, locking computers and demanding money in order for them to be unlocked.
According to Rob Wainwright, executive director of Europol, what made the attack so unique was its “unprecedented” global reach.
Researchers at Elliptic, a British firm that specializes in bitcoin payments, have reportedly said there is no evidence of withdrawals out of the wallets into which money was paid, although people are still paying into them.
While the Lazarus Group is believed to be based in North Korea, the exact level of involvement of the leadership is not quite so clear cut.
Private sector cybersecurity researchers around the world began to pick apart the code through reverse engineering, although the findings of the UK’s NCSC is likely to be based on wider research.
One of the main ways of attributing cyberattacks to certain organizations and entities is through code overlaps.

For instance, if two pieces of software use the same portions of code for achieving certain goals, it implies that they may have the same author. Nevertheless even this method is not completely fool-proof.

Meer inzicht in de risico’s van exporteren voor bedrijven

       Gratis Quick-Scan van AEB verschaft bedrijven inzicht in risicoprofiel; nu beschikbaar via www.aeb.com/quick-scan

De ontwikkelingen in de wereldpolitiek hebben overal grote impact op handelsbetrekkingen. Overheidsinstanties in de Verenigde Staten en de Europese Unie komen met nieuwe regels en voorschriften die de vrije handel beperken. Bedrijven die hier niet aan voldoen, lopen grote risico’s – in extreme gevallen met gevangenisstraffen en bedrijfssluitingen als resultaat. AEB en BSCN hebbeneen unieke quickscan ontwikkeld die bedrijven binnen tien minuten inzicht geeft in de risico’s die zij lopen.

Een toenemend aantal bedrijven verstuurt goederen naar landen over de hele wereld. Maar welk bedrijf durft met honderd procent zekerheid te stellen dat hij aan alle wettelijke eisen omtrent exportcontrole voldoet? De risico’s zijn de afgelopen jaren sterk toegenomen. De dreiging in de wereld en zeker ook in Europa neemt toe. Overheidsinstanties reageren daarop met nieuwe regels en voorschriften.
Bedrijven zijn in steeds grotere mate zelf verantwoordelijk voor de beveiliging van hun supply chains. Zij dienen zelf maatregelen te nemen om misbruik te voorkomen. Dat betekent dat compliance en juridische regelgeving steeds meer aandacht verdient. “Bedrijven die hun verantwoordelijkheid op dit vlak nemen, onderscheiden zich daarmee in de markt. Ook hun klanten doen immers graag alleen zaken met bedrijven die zo min mogelijk risico’s lopen”, stelt Martijn Feldbrugge, directeur van BSCN .

Inzicht in risicoprofiel
Om bedrijven die handelen met het buitenland te helpen hun risico’s in kaart te brengen, hebben AEB Nederland en BSCN een gratis Quick-Scan ontwikkeld. Bedrijven kunnen in tien minuten een online vragenlijst invullen, waarna ze een individueel risicoprofiel met aanbevelingen en suggesties ontvangen. Daarvoor hoeven ze geen bedrijfsgevoelige of beschermde informatie te delen. De aanbevelingen en suggesties zijn geheel vrijblijvend.
Inzicht in de exportrisico’s is van groot belang, stelt Richard Groenendijk, algemeen directeur van AEB Nederland. “Een overtreding van de Europese exportcontrolewetten kan leiden tot hoge boetes en zelfs juridische straffen, in bijzonder ernstige gevallen zelfs gevangenisstraffen. Daarnaast lopen bedrijven het gevaar dat hun handelsmogelijkheden worden ingeperkt. Uitvoervergunningen en douane-priveleges kunnen worden afgenomen en ook bedrijfssluiting behoort tot de mogelijkheden.
  
Daarnaast  lopen ondernemingen die niet aan de exportcontrolewetten van de Verenigde Staten voldoenkans het recht op het verhandelen van Amerikaanse producten te verliezen. Veel bedrijven zijn zich er niet van bewust dat ook deze Amerikaanse wetgeving van toepassing is op hun exporthandel.”

Gratis Quick-Scan
Doe direct de Quick-Scan; ga naar www.aeb.com/quick-scan. Er zijn geen kosten verbonden aan deze quickscan en het invullenvan de vragenlijst vergt maximaal tien minuten.

Over AEB (www.aeb.com – www.aeb.com/nl) 
Met ruim 30 jaar ervaring is AEB een van de toonaangevende aanbieders van wereldwijde IT-oplossingen en diensten voor Supply Chain Management met de nadruk op de logistiek van inkoop, opslag en distributie, buitenlandse handel en risicobeheer. Met de logistieke suite ASSIST4 biedt AEB een toepassing met een doorlopende procesondersteuning en een volledige transparantie voor de planning en aansturing van wereldwijde bezorgnetwerken. AEB is een internationale onderneming met ruim 5000 klanten in Europa, Azië en Amerika. Het hoofdkantoor van AEB is gevestigd in Stuttgart, met vestigingen in Hamburg, Soest, Düsseldorf en München evenals internationale vestigingen in Groot-Brittannië, Singapore, Zwitserland, Oostenrijk. Zweden, Nederland, de Tsjechische Republiek, Frankrijk en de VS.

Over BSCN (www.bscn.nl)
BSCN is specialized in the determination of the impact of UN, EU and US Sanctions- and Export Controls legislation and regulations on business activities of Financial institutions and International Trade organizations.
BSCN supports International Trade Organizations with:
•           Assessments of inherent risks from a Sanctions and Export Controls perspective;
•           Designing and implementing a tailor made Sanctions Policy;
•           Transferring the Sanctions Policy in practical instructions for the workforce;
•           Awareness-sessions for management and personnel;
•           Training for employees;
•           Audits of the application and effectiveness of the Sanctions Policy in business processes;
•           Advice on individual goods and financial transactions from a sanctions risk perspective.

 BSCN has a thorough knowledge of the various types of businesses and the associated sanctions and export control risk, and a network of sanctions and export controls experts. Based on which we are able to help you make sanctions and export controls easier and manageable.

BSCN works international, is based in the Netherlands.

20.6.17

Machine learning by ESET: The road to Augur


Machine learning (ML) in eight blogposts?! In truth, we’ve only just scratched the surface when it comes to the potential of ML in cybersecurity. However, that said, readers should now be better able to separate fact from fiction, and marketing from actual function. So, last but not least, let’s take a peek under the hood of ESET’s cybersecurity engine and its ML gears.
Our experts have been playing with machine learning for more than 20 years – with neural networks making their first appearance in our products in 1997. Since then there have been numerous internal projects aimed at automating security analysis, helping us categorize the virtual world into the good, the bad and the ugly (or even grey areas containing potentially unwanted applications or PUAs, if you will).
One of our early efforts was an automated expert system, designed for mass processing. In 2006, it was quite simple and helped us process part of the growing number of samples and cutting the immense workload of our detection engineers. Over the years, we have perfected its abilities and made it a crucial part of the technology responsible for the initial sorting and classification of the hundreds of thousands of items we receive every day from sources such as our worldwide network ESET LiveGrid®, security feeds and our ongoing exchange with other security vendors.
Another ML project has been running under ESET’s hood since 2012, placing all the analyzed items on “the cybersecurity map” and flagging those that require more attention. Interestingly, it was exactly this system that did a great job in the recent WannaCryptor case, alerting us in the earliest phases about the soon to be wildly spreading ransomware file. Despite already having a network detection for the EternalBlue exploit, this system helped ESET make additional detections that further improved the protection of our users.
However, machine learning is a tricky beast and not all our efforts have gone according to plan. Older projects focused on automating the creation of broader DNA detections from previously known detections, determining URL reputations, or finding the “nearest neighbors” of samples. Eventually, these were outperformed by other, more effective means, or replaced thanks to further development.
However, all of this helped us gain experience, and, piece-by-piece, has paved the way for what we have today – a mature, real-world application of machine learning technology in the cloud, as well as on client’s endpoints.
Meet Augur, our ML beast
At ESET we love ancient history – the company is named after an Egyptian goddess after all – so that was naturally the place we looked for when it came to naming our machine learning engine. In Ancient Rome, augur was a term used for religious officials who observed natural signs and interpreted these as an indication of divine approval or disapproval of a proposed action. The analogy with cybersecurity is not hard to draw, but in contrast with the alchemy-natured augurs back then, our Augur bases its decisions on science, mathematics and previous experience.
Now for the technical part. ESET’s Augur ML engine couldn’t have materialized without three main factors:
1.     With the arrival of big data and cheaper hardware, machine learning was made more affordable – be it for medical purposes, autonomous cars or detections in cybersecurity.
2.     Growing popularity of ML algorithms and the science behind it led to their broader technical application and availability to anyone who was willing to implement them.
3.     After three decades of fighting black-hats and their “products”, we have built a latter-day “Library of Alexandria” equivalent – of malware. This vast and highly organized database contains millions of extracted features and DNA genes of everything we’ve analyzed in the past. A great foundation to create a carefully chosen mix for Augur’s training set.
However, the boom of the above named factors have also brought challenges. We have had to pick the best performing algorithms and approaches, as not all machine learning is applicable to the highly specific security universe.
After much testing, we have settled on combining two methodologies that have proven effective so far:
1.     Neural networks, specifically deep learning and long short-term memory.
2.     Consolidated output of six precisely chosen classification algorithms.
Not clear enough? Imagine you have a suspicious executable file. Augur will first emulate its behavior and run a basic DNA analysis. Then it will use the gathered information to extract numeric features from the file, look at which processes it wants to run and look at the DNA mosaic in order to decide which category it fits best – clean, potentially unwanted or malicious. At this point, it is important to state that unlike some vendors who claim they do not need unpacking, behavioral analyzing or emulation, we find this crucial to properly extract data for machine learning. Otherwise – when data is compressed or encrypted – it’ just an attempt to classify noise.
The group of classification algorithms has two possible setups:
The more aggressive one will label a sample as malicious if most of the six algorithms vote it as such. This is useful mainly for IT staff using ESET Enterprise inspector, as it can flag anything suspicious and leave the final evaluation of the outputs to a competent admin.
The milder or more conservative approach, declares a sample clean, if at least one of the six algorithms comes to such conclusion. This is useful for general purpose systems with a less expert overview.
Just to top it all off, we came across a presentation by Facebook describing their machine learning solution and it very much resembles Augur’s architecture – aiming to combine the best of the classification algorithms and neural networks.
Okay, so let’s move away from theory and look at the real world results of ESET’s machine learning approach as applied to the recent malware attacks misusing the EternalBlue exploit and pushing both the WannaCryptor ransomware and CoinMiner malware families. Apart from our network detection and effective flagging by our other ML system, the Augur model also immediately identified samples of both families as malicious.
What’s more interesting, we also ran this test with a month old Augur model that couldn’t have encountered these malware families anywhere before. This means that the detections were based solely on the information learned from the training set. And guess what? They were both correctly labeled as malicious.
30 years of progress and innovation in IT security has taught us, that somethings do not have an easy solution, especially in cyberspace, where change comes rapidly and the playing field can shift in a matter of minutes. Machine learning, even when wrapped up in shiny marketing speak, won’t change that anytime soon. Therefore, we believe that even the best ML cannot replace skilled and experienced researchers, those who built its foundations and those same researchers who will further innovate it. We’re proud to say that many of these talented individuals work at ESET, helping protect users from future threats.
The whole series:

Eneco Data Challenge gewonnen door Coders Co. met RAX tijdens Data Science Week 2017



Praktische toepasbaarheid en zakelijke relevantie van datamodel voor onderhoud straatlantaarns goed voor goud.

Coders Co., het Amsterdamse vooraanstaande data scientists team, heeft op 6 juni 2017 de Eneco Predictive Maintenance Challange gewonnen tijdens de Data Science Week 2017.

Het winnende team van Coders Co, aangevuld met Konrad Banachewicz van TNG Quant Consultancy, programmeerde met zijn RAX-technologie een datamodel om te voorspellen welke straatverlichting stuk gaat. Inclusief visualisatie, aangevuld met automatische planning van de efficiëntste route langs de palen voor de onderhoudsmonteur. Daarmee geeft het model antwoord op vragen van Eneco:
·         Waar moeten we beginnen lampen te vervangen in straatlantaarns?
·         Waar is de komende 2 maanden onderhoud nodig?

Praktische toepasbaarheid en zakelijke relevantie scoren
De jury was onder de indruk van de eenvoud, direct praktische toepasbaarheid en vooral de zakelijke toegevoegde waarde van Coders Co’s datamodel.
“Terwijl de andere teams zich concentreerden op zuiverheid van het model, hebben wij vooral gekeken naar praktische bruikbaarheid en direct toegevoegde waarde.

In plaats van geavanceerde algoritmes te gebruiken, zoals neurale netwerken, hebben we voor simpele lineaire regressie gekozen om de kenmerken van de lampen te vinden die het beste de vervangingsdatum voorspellen. Deze bleken
de levensduur zoals opgegeven door de fabrikant en de geografische locatie. Dit simpele model hebben we ‘verpakt’ in een visualisatie van te vervangen lampen op een kaart. Plus een algoritme dat de postcodegebieden toont met lampen die als eerste aan een onderhoudsbeurt toe zijn.
Verder hebben we een idee voor een routeplanner voor de onderhoudsmonteur gepresenteerd. Deze aanpak is kenmerkend voor onze werkwijze. Wij kraken data met passie, maar niet alleen om het kraken. We streven altijd naar maximaal zakelijk rendement”, vertelt Gosia Wrzesinska, teamlid en CEO van Coders Co.

Twee prijzen in twee maanden
Met de Eneco Challenge wint Coders Co een tweede prijs in twee maanden. In mei won het team al de Gfk Insights Challenge tijdens de WHAT datathon. Daar heeft het team binnen 16 uur het winkelgedrag (customer journeys) over verschillende online shops uit duizenden clickstreams wederom met RAX vertaald naar een interactief dashboard.

Over Coders Co.

Coders Co. is een vooraanstaand team van data scientists dat in 2013 is gestart uit passie voor programmeren. Het hele team heeft een PhD in Computer Science en beschikt over jarenlange ervaring in de software-industrie. Zoals het programmeren van embedded systemen, hacken van besturingssystemen en uiteenlopende intelligente web-en mobiele toepassingen. Klanten zijn onder meer: PGGM (Nederlands Pensioenfonds) en INTAGE (een groot market research bedrijf in Japan). Onder de naam Journeylytics heeft het team zich gespecialiseerd in big data analyse voor customer journeys. Zie www.journeylytics.com en www.codersco.com

19.6.17

British hacker admits stealing satellite data from US Department of Defense

British hacker admits stealing satellite data from US Department of Defense

A British computer hacker has admitted breaking into a US military communications system and stealing the ranks, usernames, phone numbers, and email addresses of over 800 employees as well as IMEI data related to 30,000 satellite phones.
25-year-old Sean Caffrey, of Sutton Coldfield, West Midlands, pleaded guilty at Birmingham Crown Court yesterday to offences under the Computer Misuse Act that he stole data from the US Department of Defense (DOD).
Caffrey broke into the DOD’s Enhanced Mobile Satellite Services network on 15 June 2014, and posted a screenshot online of some of the data he had stolen using the pseudonym “ISIS Freedom Fighters”, and berated rival hacking group Lizard Squad:
“We smite the Lizards, LizardSquad your time is near. We’re in your bases, we control your satellites. The missiles shall rein upon thy who claim alliance, watch your heads, ** T-47:59:59 until lift off. We’re one, we’re many, we lurk in the dark, we’re everywhere and anywhere. Live Free Die Hard! DoD, DISA EMSS : Enhanced Mobile Satellite Services is not all, Department of Defense has no Defenses.”
However, in an extraordinary blunder, Caffrey seems to have made little effort to cover his tracks – and failed to use services that might have provided him anonymity online such as a proxy or VPN.
Hmmph. Hardly the criminal mastermind then, eh?
It’s therefore not too much of a surprise to hear that authorities were able to trace the hack back to Caffrey’s home, where he was arrested in March 2015 as part of a wider sweep against cybercriminals up and down the UK.
During a subsequent forensic examination of Caffrey’s seized computer equipment, stolen data was discovered.
The UK National Crime Agency’s Janey Young was keen to warn others that international co-operation and the department’s expertise were helping to bring hackers to justice:
“After strong partnership working between the NCA, the FBI and the DoD’s Defense Criminal Investigative Service there was very clear, very compelling evidence against Sean Caffrey.”
“No one should think that cybercrime is victimless or that they can get away with it. The NCA has people with skills like Caffrey’s, but they’re doing the opposite to him in detecting cyber criminals and bringing them to justice.”
No details have been shared of precisely how Caffrey managed to breach the network, but the hack is said to have cost the US Department of Defense approximately US $628,000 to fix.
Caffrey is scheduled to appear for sentencing on 14 August.

Would you trust your smartphone with your life?

The stealthy rise of the smartphone has been steady but sure. At first we were dubious, using them sparingly. Then we became accustomed to using them as tools for communication. This gave way to our becoming reliant on them. Now, they’re so irreplaceable we don’t even question them. That’s smart.
So, what’s up?
You’ve just finished up at a business meeting in a part of town you’ve not been to before. Vaguely conscious of your actions, within in a minute you’ve requested “get me home” from an app on your smartphone and it’s calculated your best route. Great! You’re off. You quickly check your emails as you set off. You haven’t thought twice about it.
What’s wrong with that?
Nothing, as long as you’re not using a public Wi-Fi network. If you are, you might be baring all to loitering cybercriminals monitoring the network’s traffic. And once they’ve spotted an easy target, well, depending on the circumstances, there are multiple avenues to take (including, for example, a man-in-the-middle attack).
That’s a bit disconcerting. What else should I be aware of?
Do you use Facebook on your phone? A fitness app? Well, consider the following – Facebook is following you around the internet, while your fitness apps, which help to whip you into shape, basically know where you are all the time.
Surely those companies want to protect their users?
Yes and no. Your data is useful to them. They want to know what websites you visit, what your favourite high-street stores are, and how many steps you’ve taken that day. In return, they’ll show you more relevant ads, your shopping experiences will become more enjoyable and your fitness will improve (maybe). Yes, it’s a little creepy, and yes, if you like, it’s a form of spying.
There must be something I can do about this.
The good news is there is – but it involves a bit of effort:
1.     Check Wi-Fi networks
There are ways to use public Wi-Fi with minimal risk. For example, check that the Wi-Fi name is real – with a member of staff – ensure sharing functionalities on your smartphone are off, and avoid using banking apps on public, unencrypted networks.
2.     Control your apps
Turn off Wi-Fi and Bluetooth when you aren’t using your apps. This may be easier said than done, given the constantly “on” world we live in, but it’s a valid sacrifice if you want to increase your privacy. You can alternatively turn off “location services” in your settings, which at least blocks access to where you are.
Finally, check your privacy settings for each individual app. Time-consuming, but time well spent.
3.     Stay street-wise
This is often just a case of using your initiative. Create strong passwords – one unique, lengthy and complex one for each site – activate two-factor authentication; in short, own your online presence.
Only install apps from a legitimate source, and think before you grant them permission to access your data. Do you really need the extra convenience?
Always, always update your software.
4.     Maintain your cover
It’s crucial that your phone is fully wiped of all data before you sell it. Would you hand your bank card and your house keys to a stranger if you were relocating? The same applies to your digital life.
Take back control
We make daily decisions based on our smartphones, which are increasingly replacing our better instincts with the auto-generated intelligence we take as a legitimate authority. By ensuring our trust is well-placed, we can harness the growing power of technology and use it to our advantage.